Sunday, March 27, 2011

Tiny LNA-Based Compounds Developed By Santaris Pharma A/S Inhibit Entire Disease-Associated MicroRNA Families


Main Category: Cancer / Oncology
Also Included In: Infectious Diseases / Bacteria / Viruses;  Clinical Trials / Drug Trials;  Cancer / Oncology
Article Date: 21 Mar 2011 - 2:00 PDT window.fbAsyncInit = function() { FB.init({ appId: 'aa16a4bf93f23f07eb33109d5f1134d3', status: true, cookie: true, xfbml: true, channelUrl: 'http://www.medicalnewstoday.com/scripts/facebooklike.html'}); }; (function() { var e = document.createElement('script'); e.async = true; e.src = document.location.protocol + '//connect.facebook.net/en_US/all.js'; document.getElementById('fb-root').appendChild(e); }()); email icon email to a friend   printer icon printer friendly   write icon opinions
5 starsnot yet rated
A study published online in Nature Genetics demonstrates that tiny Locked Nucleic Acid (LNA)-based compounds developed by Santaris Pharma A/S can inhibit entire disease-associated microRNA families. This provides a potential new approach for treating a variety of diseases including cancer, viral infections, cardiovascular and muscle diseases (1).

Santaris Pharma A/S, a clinical-stage biopharmaceutical company focused on the research and development of mRNA and microRNA targeted therapies, developed the tiny LNA-based compounds, which are 8-mer LNA oligonucleotides, using its proprietary LNA Drug Platform. The high affinity and target specificity of tiny LNA-based compounds enabled functional inhibition of both single microRNAs and entire microRNA families in a range of tissues in vivo without off-target effects.

MicroRNAs have emerged as an important class of small regulatory RNAs encoded in the genome. They act to control the expression of sets of genes and entire pathways and are thus thought of as master regulators of gene expression associated with many diseases. Because they dictate the expression of fundamental regulatory pathways, microRNAs represent potential drug targets in the treatment of many disease processes.

"Using tiny LNA-based compounds to successfully inhibit entire disease-associated microRNA families provides a new range of opportunities to develop novel microRNA-targeted drugs for both in-house drug discovery programs, as well as with our partners," said Henrik Ørum, Ph.D., Vice President and Chief Scientific Officer of Santaris Pharma A/S. "The versatility of our proprietary LNA Drug Platform has the potential to develop new modalities to target a broad range of diseases, including cardiometabolic disorders, infectious and inflammatory diseases, and cancer by targeting microRNAs, entire microRNA families or messengerRNAs."

The study published in Nature Genetics was carried out by Santaris Pharma A/S scientists and collaborators at Cold Spring Harbor Laboratory, New York. In this study, scientists demonstrated that tiny LNA-based compounds inhibited both single microRNAs and entire microRNA families in cultured cells, as well as in vivo in several mice tissues and in a mouse breast tumor model. The tiny LNA-based compounds were well tolerated by the mice and could be delivered without the use of complex delivery vehicles.

The Santaris Pharma A/S LNA Drug Platform is the only RNA technology with both mRNA and microRNA targeted drugs in clinical trials, demonstrating the broad utility of the proprietary platform. In September 2010, Santaris Pharma A/S successfully advanced miravirsen, a lead microRNA drug candidate targeting miR-122, into Phase 2 studies for the treatment of patients infected with the Hepatitis C virus. In addition, Santaris Pharma A/S is advancing two mRNA-targeted drugs, SPC5001 targeting PCSK9 and SPC4955 targeting apoB, for the treatment of high cholesterol into Phase 1 in the first half of 2011.

Santaris Pharma A/S also has a robust product pipeline with its partners consisting of mRNA and microRNA drug discovery and development collaborations. These include partnerships with Pfizer, Inc. (delivery of lead candidates against up to 20 targets), miRagen Therapeutics (cardiovascular diseases), Shire plc (rare genetic disorders), GlaxoSmithKline (four viral disease drug candidates) and Enzon Pharmaceuticals (eight cancer targets successfully delivered - three are now in Phase 1 clinical studies).

Notes:

(1) Obad, dos Santos, Petri, Heidenblad, Broom, Ruse, Fu, Lindow, Stenvang, Straarup, Hansen, Koch, Pappin, Hannon and Kauppinen. 2011. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genetics 10.1038/ng.786.

Source:
Navjot Rai
Edelman PR


Bookmark and Share

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:



MediLexicon International Ltd Logo
Privacy Policy | Terms and Conditions

MediLexicon International Ltd
Bexhill-on-Sea, UK
MediLexicon International Ltd © 2004-2011 All rights reserved.



View the original article here

No comments:

Post a Comment